Standardize and append a batch of data#
Here, we’ll learn
how to standardize a less well curated collection
how to append it to the growing versioned collection
import lamindb as ln
import bionty as bt
ln.settings.verbosity = "hint"
bt.settings.auto_save_parents = False
ln.settings.transform.stem_uid = "ManDYgmftZ8C"
ln.settings.transform.version = "1"
ln.track()
💡 connected lamindb: testuser1/test-scrna
💡 Assuming editor is Jupyter Lab.
💡 notebook imports: bionty==0.42.7 lamindb==0.69.9
💡 saved: Transform(uid='ManDYgmftZ8C5zKv', name='Standardize and append a batch of data', key='scrna2', version='1', type='notebook', updated_at=2024-04-10 17:52:44 UTC, created_by_id=1)
💡 saved: Run(uid='DvJwXOir8J9LgGl9PYAt', transform_id=2, created_by_id=1)
💡 tracked pip freeze > /home/runner/.cache/lamindb/run_env_pip_DvJwXOir8J9LgGl9PYAt.txt
Let’s now consider a less-well curated dataset:
adata = ln.core.datasets.anndata_pbmc68k_reduced()
adata
Show code cell output
AnnData object with n_obs × n_vars = 70 × 765
obs: 'cell_type', 'n_genes', 'percent_mito', 'louvain'
var: 'n_counts', 'highly_variable'
uns: 'louvain', 'louvain_colors', 'neighbors', 'pca'
obsm: 'X_pca', 'X_umap'
varm: 'PCs'
obsp: 'connectivities', 'distances'
We are still working with human data, and can globally set an organism:
bt.settings.organism = "human"
annotate = ln.Annotate.from_anndata(adata, var_index=bt.Gene.symbol, categoricals={"cell_type": bt.CellType.name})
❗ 3 non-validated categories are not saved in Feature.name: ['percent_mito', 'louvain', 'n_genes']!
→ to lookup categories, use lookup().columns
→ to save, run add_new_from_columns
✅ added 5 records from public with Gene.symbol for var_index: ['GPX1', 'SOD2', 'RN7SL1', 'SNORD3B-2', 'IGLL5']
❗ 11 non-validated categories are not saved in Gene.symbol: ['RP11-782C8.1', 'RP11-277L2.3', 'RP11-156E8.1', 'RP3-467N11.1', 'RP11-390E23.6', 'RP11-489E7.4', 'RP11-291B21.2', 'RP11-620J15.3', 'TMBIM4-1', 'AC084018.1', 'CTD-3138B18.5']!
→ to lookup categories, use lookup().var_index
→ to save, run add_new_from_var_index
Standardize & validate genes #
Let’s convert Gene symbols to Ensembl ids via standardize()
. Note that this is a non-unique mapping and the first match is kept because the keep
parameter in .standardize()
defaults to "first"
:
adata.var["ensembl_gene_id"] = bt.Gene.standardize(
adata.var.index,
field=bt.Gene.symbol,
return_field=bt.Gene.ensembl_gene_id,
)
# use ensembl_gene_id as the index
adata.var.index.name = "symbol"
adata.var = adata.var.reset_index().set_index("ensembl_gene_id")
# we only want to save data with validated genes
validated = bt.Gene.validate(adata.var.index, bt.Gene.ensembl_gene_id, mute=True)
adata_validated = adata[:, validated].copy()
💡 standardized 754/765 terms
Here, we’ll use .raw
:
adata_validated.raw = adata.raw[:, validated].to_adata()
adata_validated.raw.var.index = adata_validated.var.index
annotate = ln.Annotate.from_anndata(adata_validated, var_index=bt.Gene.ensembl_gene_id, categoricals={"cell_type": bt.CellType.name})
❗ 3 non-validated categories are not saved in Feature.name: ['percent_mito', 'louvain', 'n_genes']!
→ to lookup categories, use lookup().columns
→ to save, run add_new_from_columns
annotate.validate()
✅ var_index is validated against Gene.ensembl_gene_id
💡 mapping cell_type on CellType.name
❗ 9 terms are not validated: 'Dendritic cells', 'CD19+ B', 'CD4+/CD45RO+ Memory', 'CD8+ Cytotoxic T', 'CD4+/CD25 T Reg', 'CD14+ Monocytes', 'CD56+ NK', 'CD8+/CD45RA+ Naive Cytotoxic', 'CD34+'
→ save terms via .add_new_from('cell_type')
False
Standardize & validate cell types #
Since none of the cell types are validate, let us search the cell type names from the public ontology, and add the name found in the AnnData
object as a synonym to the top match found in the public ontology.
bionty = bt.CellType.public() # access the public ontology through bionty
name_mapper = {}
for name in adata_validated.obs.cell_type.unique():
# search the public ontology and use the ontology id of the top match
ontology_id = bionty.search(name).iloc[0].ontology_id
# create a record by loading the top match from bionty
record = bt.CellType.from_public(ontology_id=ontology_id)
name_mapper[name] = record.name # map the original name to standardized name
record.save()
record.add_synonym(name)
Show code cell output
✅ created 1 CellType record from Bionty matching ontology_id: 'CL:0001087'
✅ created 1 CellType record from Bionty matching ontology_id: 'CL:0000910'
✅ created 1 CellType record from Bionty matching ontology_id: 'CL:0000919'
✅ created 1 CellType record from Bionty matching ontology_id: 'CL:0002057'
✅ created 1 CellType record from Bionty matching ontology_id: 'CL:0002101'
We can now standardize cell type names using the search-based mapper:
adata_validated.obs.cell_type = adata_validated.obs.cell_type.map(name_mapper)
Now, all cell types are validated:
annotate.validate()
✅ var_index is validated against Gene.ensembl_gene_id
✅ cell_type is validated against CellType.name
True
Register #
artifact = annotate.save_artifact(description="10x reference adata")
💡 path content will be copied to default storage upon `save()` with key `None` ('.lamindb/ODkxta4ERH5EpGXMIetM.h5ad')
✅ storing artifact 'ODkxta4ERH5EpGXMIetM' at '/home/runner/work/lamin-usecases/lamin-usecases/docs/test-scrna/.lamindb/ODkxta4ERH5EpGXMIetM.h5ad'
💡 parsing feature names of X stored in slot 'var'
✅ 754 terms (100.00%) are validated for ensembl_gene_id
✅ linked: FeatureSet(uid='CXggu91TFAXkH3lbOZIe', n=754, type='number', registry='bionty.Gene', hash='j8QkIeLBgJwsscY4vVPx', created_by_id=1)
💡 parsing feature names of slot 'obs'
✅ 1 term (25.00%) is validated for name
❗ 3 terms (75.00%) are not validated for name: n_genes, percent_mito, louvain
✅ linked: FeatureSet(uid='vNB6W95UYPYDqZsJwbYw', n=1, registry='core.Feature', hash='EIJcRo5vSqJ707xTTMtW', created_by_id=1)
✅ saved 2 feature sets for slots: 'var','obs'
artifact.view_lineage()
Append the shard to the collection#
Query the previous collection:
collection_v1 = ln.Collection.filter(
name="My versioned scRNA-seq collection", version="1"
).one()
Create a new version of the collection by sharding it across the new artifact
and the artifact underlying version 1 of the collection:
collection_v2 = ln.Collection(
[artifact, collection_v1.artifacts[0]],
is_new_version_of=collection_v1,
)
collection_v2.save()
collection_v2.labels.add_from(artifact)
collection_v2.labels.add_from(collection_v1)
Show code cell output
✅ loaded: FeatureSet(uid='Ca5PrYB3AOm1piIwUIES', n=4, registry='core.Feature', hash='8gDo0ILt6wrOfQFp6okl', updated_at=2024-04-10 17:52:37 UTC, created_by_id=1)
💡 adding collection [1] as input for run 2, adding parent transform 1
💡 adding artifact [1] as input for run 2, adding parent transform 1
✅ saved 1 feature set for slot: 'var'
💡 transferring cell_type
💡 transferring donor
💡 transferring tissue
💡 transferring cell_type
💡 transferring assay
Version 2 of the collection covers significantly more conditions.
collection_v2.describe()
Collection(uid='pmqiGV7fNOJTWI04vw29', name='My versioned scRNA-seq collection', version='2', hash='HNR3VFV60_yqRnUka11E', visibility=1, updated_at=2024-04-10 17:53:03 UTC)
Provenance:
📎 transform: Transform(uid='ManDYgmftZ8C5zKv', name='Standardize and append a batch of data', key='scrna2', version='1', type='notebook', updated_at=2024-04-10 17:52:44 UTC, created_by_id=1)
📎 run: Run(uid='DvJwXOir8J9LgGl9PYAt', started_at=2024-04-10 17:52:44 UTC, is_consecutive=True, transform_id=2, created_by_id=1)
📎 created_by: User(uid='DzTjkKse', handle='testuser1', name='Test User1', updated_at=2024-04-10 17:50:52 UTC)
Features:
var: FeatureSet(uid='CPlkkc63hVnZSKRWgRe0', n=36508, type='number', registry='bionty.Gene', hash='b5NMddLHEyZqn-vSYvBI', updated_at=2024-04-10 17:53:01 UTC, created_by_id=1)
'MIR1302-2HG', 'FAM138A', 'OR4F5', 'None', 'None', 'None', 'None', 'None', 'None', 'None', 'OR4F29', 'None', 'OR4F16', 'None', 'LINC01409', 'FAM87B', 'LINC01128', 'LINC00115', 'FAM41C', 'None', ...
obs: FeatureSet(uid='Ca5PrYB3AOm1piIwUIES', n=4, registry='core.Feature', hash='8gDo0ILt6wrOfQFp6okl', updated_at=2024-04-10 17:52:37 UTC, created_by_id=1)
🔗 donor (12, core.ULabel): 'D496', '621B', 'A29', 'A36', 'A35', '637C', 'A52', 'A37', 'D503', '640C', ...
🔗 tissue (17, bionty.Tissue): 'blood', 'thoracic lymph node', 'spleen', 'lung', 'mesenteric lymph node', 'lamina propria', 'liver', 'jejunal epithelium', 'omentum', 'bone marrow', ...
🔗 cell_type (40, bionty.CellType): 'dendritic cell', 'effector memory CD4-positive, alpha-beta T cell, terminally differentiated', 'cytotoxic T cell', 'CD8-positive, CD25-positive, alpha-beta regulatory T cell', 'CD14-positive, CD16-negative classical monocyte', 'CD38-positive naive B cell', 'B cell, CD19-positive', 'CD4-positive, alpha-beta T cell', 'classical monocyte', 'T follicular helper cell', ...
🔗 assay (3, bionty.ExperimentalFactor): '10x 3' v3', '10x 5' v2', '10x 5' v1'
Labels:
📎 tissues (17, bionty.Tissue): 'blood', 'thoracic lymph node', 'spleen', 'lung', 'mesenteric lymph node', 'lamina propria', 'liver', 'jejunal epithelium', 'omentum', 'bone marrow', ...
📎 cell_types (40, bionty.CellType): 'dendritic cell', 'effector memory CD4-positive, alpha-beta T cell, terminally differentiated', 'cytotoxic T cell', 'CD8-positive, CD25-positive, alpha-beta regulatory T cell', 'CD14-positive, CD16-negative classical monocyte', 'CD38-positive naive B cell', 'B cell, CD19-positive', 'CD4-positive, alpha-beta T cell', 'classical monocyte', 'T follicular helper cell', ...
📎 experimental_factors (3, bionty.ExperimentalFactor): '10x 3' v3', '10x 5' v2', '10x 5' v1'
📎 ulabels (12, core.ULabel): 'D496', '621B', 'A29', 'A36', 'A35', '637C', 'A52', 'A37', 'D503', '640C', ...
View data lineage:
collection_v2.view_lineage()