Bulk RNA-seq#
Setup#
!lamin init --storage test-bulkrna --schema bionty
Show code cell output
π‘ connected lamindb: testuser1/test-bulkrna
import lamindb as ln
from pathlib import Path
import bionty as bt
import pandas as pd
import anndata as ad
π‘ connected lamindb: testuser1/test-bulkrna
Ingest data#
Access #
We start by simulating a nf-core RNA-seq run which yields us a count matrix artifact.
(See Nextflow for running this with Nextflow.)
# pretend we're running a bulk RNA-seq pipeline
ln.track(transform=ln.Transform(name="nf-core RNA-seq", reference="https://nf-co.re/rnaseq"))
# create a directory for its output
Path("./test-bulkrna/output_dir").mkdir(exist_ok=True)
# get the count matrix
path = ln.core.datasets.file_tsv_rnaseq_nfcore_salmon_merged_gene_counts(
populate_registries=True
)
# move it into the output directory
path = path.rename(f"./test-bulkrna/output_dir/{path.name}")
# register it
ln.Artifact(path, description="Merged Bulk RNA counts").save()
Show code cell output
π‘ saved: Transform(uid='gN1shbTxWNROKpsT', name='nf-core RNA-seq', type='pipeline', reference='https://nf-co.re/rnaseq', updated_at=2024-04-10 17:53:41 UTC, created_by_id=1)
π‘ saved: Run(uid='KaPxfqE80cmsA6P3h7Pz', transform_id=1, created_by_id=1)
Transform #
ln.settings.transform.stem_uid = "s5V0dNMVwL9i"
ln.settings.transform.version = "0"
ln.track()
π‘ notebook imports: anndata==0.9.2 bionty==0.42.7 lamindb==0.69.9 pandas==1.5.3
π‘ saved: Transform(uid='s5V0dNMVwL9i6K79', name='Bulk RNA-seq', key='bulkrna', version='0', type='notebook', updated_at=2024-04-10 17:53:45 UTC, created_by_id=1)
π‘ saved: Run(uid='WdexGnROKy7OtpN1HU65', transform_id=2, created_by_id=1)
Letβs query the artifact:
artifact = ln.Artifact.filter(description="Merged Bulk RNA counts").one()
df = artifact.load()
If we look at it, we realize it deviates far from the tidy data standard Wickham14, conventions of statistics & machine learning Hastie09, Murphy12 and the major Python & R data packages.
Variables are not in columns and observations are not in rows:
df
gene_id | gene_name | RAP1_IAA_30M_REP1 | RAP1_UNINDUCED_REP1 | RAP1_UNINDUCED_REP2 | WT_REP1 | WT_REP2 | |
---|---|---|---|---|---|---|---|
0 | Gfp_transgene_gene | Gfp_transgene_gene | 0.0 | 0.000 | 0.0 | 0.0 | 0.0 |
1 | HRA1 | HRA1 | 0.0 | 8.572 | 0.0 | 0.0 | 0.0 |
2 | snR18 | snR18 | 3.0 | 8.000 | 4.0 | 8.0 | 8.0 |
3 | tA(UGC)A | TGA1 | 0.0 | 0.000 | 0.0 | 0.0 | 0.0 |
4 | tL(CAA)A | SUP56 | 0.0 | 0.000 | 0.0 | 0.0 | 0.0 |
... | ... | ... | ... | ... | ... | ... | ... |
120 | YAR064W | YAR064W | 0.0 | 2.000 | 0.0 | 0.0 | 0.0 |
121 | YAR066W | YAR066W | 3.0 | 13.000 | 8.0 | 5.0 | 11.0 |
122 | YAR068W | YAR068W | 9.0 | 28.000 | 24.0 | 5.0 | 7.0 |
123 | YAR069C | YAR069C | 0.0 | 0.000 | 0.0 | 0.0 | 1.0 |
124 | YAR070C | YAR070C | 0.0 | 0.000 | 0.0 | 0.0 | 0.0 |
125 rows Γ 7 columns
Letβs change that and move observations into rows:
df = df.T
df
0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | ... | 115 | 116 | 117 | 118 | 119 | 120 | 121 | 122 | 123 | 124 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
gene_id | Gfp_transgene_gene | HRA1 | snR18 | tA(UGC)A | tL(CAA)A | tP(UGG)A | tS(AGA)A | YAL001C | YAL002W | YAL003W | ... | YAR050W | YAR053W | YAR060C | YAR061W | YAR062W | YAR064W | YAR066W | YAR068W | YAR069C | YAR070C |
gene_name | Gfp_transgene_gene | HRA1 | snR18 | TGA1 | SUP56 | TRN1 | tS(AGA)A | TFC3 | VPS8 | EFB1 | ... | FLO1 | YAR053W | YAR060C | YAR061W | YAR062W | YAR064W | YAR066W | YAR068W | YAR069C | YAR070C |
RAP1_IAA_30M_REP1 | 0.0 | 0.0 | 3.0 | 0.0 | 0.0 | 0.0 | 1.0 | 55.0 | 36.0 | 632.0 | ... | 4.357 | 0.0 | 1.0 | 0.0 | 1.0 | 0.0 | 3.0 | 9.0 | 0.0 | 0.0 |
RAP1_UNINDUCED_REP1 | 0.0 | 8.572 | 8.0 | 0.0 | 0.0 | 0.0 | 0.0 | 72.0 | 33.0 | 810.0 | ... | 15.72 | 0.0 | 0.0 | 0.0 | 3.0 | 2.0 | 13.0 | 28.0 | 0.0 | 0.0 |
RAP1_UNINDUCED_REP2 | 0.0 | 0.0 | 4.0 | 0.0 | 0.0 | 0.0 | 0.0 | 115.0 | 82.0 | 1693.0 | ... | 13.772 | 0.0 | 4.0 | 0.0 | 2.0 | 0.0 | 8.0 | 24.0 | 0.0 | 0.0 |
WT_REP1 | 0.0 | 0.0 | 8.0 | 0.0 | 0.0 | 1.0 | 0.0 | 60.0 | 63.0 | 1115.0 | ... | 13.465 | 0.0 | 0.0 | 0.0 | 1.0 | 0.0 | 5.0 | 5.0 | 0.0 | 0.0 |
WT_REP2 | 0.0 | 0.0 | 8.0 | 0.0 | 0.0 | 0.0 | 0.0 | 30.0 | 25.0 | 704.0 | ... | 6.891 | 0.0 | 1.0 | 0.0 | 0.0 | 0.0 | 11.0 | 7.0 | 1.0 | 0.0 |
7 rows Γ 125 columns
Now, itβs clear that the first two rows are in fact no observations, but descriptions of the variables (or features) themselves.
Letβs create an AnnData object to model this. First, create a dataframe for the variables:
var = pd.DataFrame({"gene_name": df.loc["gene_name"].values}, index=df.loc["gene_id"])
var.head()
gene_name | |
---|---|
gene_id | |
Gfp_transgene_gene | Gfp_transgene_gene |
HRA1 | HRA1 |
snR18 | snR18 |
tA(UGC)A | TGA1 |
tL(CAA)A | SUP56 |
Now, letβs create an AnnData:
# we're also fixing the datatype here, which was string in the tsv
adata = ad.AnnData(df.iloc[2:].astype("float32"), var=var)
adata
AnnData object with n_obs Γ n_vars = 5 Γ 125
var: 'gene_name'
The AnnData object is in tidy form and complies with conventions of statistics and machine learning:
adata.to_df()
gene_id | Gfp_transgene_gene | HRA1 | snR18 | tA(UGC)A | tL(CAA)A | tP(UGG)A | tS(AGA)A | YAL001C | YAL002W | YAL003W | ... | YAR050W | YAR053W | YAR060C | YAR061W | YAR062W | YAR064W | YAR066W | YAR068W | YAR069C | YAR070C |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
RAP1_IAA_30M_REP1 | 0.0 | 0.000 | 3.0 | 0.0 | 0.0 | 0.0 | 1.0 | 55.0 | 36.0 | 632.0 | ... | 4.357 | 0.0 | 1.0 | 0.0 | 1.0 | 0.0 | 3.0 | 9.0 | 0.0 | 0.0 |
RAP1_UNINDUCED_REP1 | 0.0 | 8.572 | 8.0 | 0.0 | 0.0 | 0.0 | 0.0 | 72.0 | 33.0 | 810.0 | ... | 15.720 | 0.0 | 0.0 | 0.0 | 3.0 | 2.0 | 13.0 | 28.0 | 0.0 | 0.0 |
RAP1_UNINDUCED_REP2 | 0.0 | 0.000 | 4.0 | 0.0 | 0.0 | 0.0 | 0.0 | 115.0 | 82.0 | 1693.0 | ... | 13.772 | 0.0 | 4.0 | 0.0 | 2.0 | 0.0 | 8.0 | 24.0 | 0.0 | 0.0 |
WT_REP1 | 0.0 | 0.000 | 8.0 | 0.0 | 0.0 | 1.0 | 0.0 | 60.0 | 63.0 | 1115.0 | ... | 13.465 | 0.0 | 0.0 | 0.0 | 1.0 | 0.0 | 5.0 | 5.0 | 0.0 | 0.0 |
WT_REP2 | 0.0 | 0.000 | 8.0 | 0.0 | 0.0 | 0.0 | 0.0 | 30.0 | 25.0 | 704.0 | ... | 6.891 | 0.0 | 1.0 | 0.0 | 0.0 | 0.0 | 11.0 | 7.0 | 1.0 | 0.0 |
5 rows Γ 125 columns
Validate #
Letβs create a Artifact object from this AnnData.
Almost all gene IDs are validated:
genes = bt.Gene.from_values(
adata.var.index,
bt.Gene.stable_id,
organism="saccharomyces cerevisiae", # or set globally with bt.settings.organism
)
Show code cell output
β did not create Gene records for 2 non-validated stable_ids: 'Gfp_transgene_gene', 'YAR062W'
# also register the 2 non-validated genes obtained from Bionty
ln.save(genes)
Register #
efs = bt.ExperimentalFactor.lookup()
organism = bt.Organism.lookup()
features = ln.Feature.lookup()
curated_file = ln.Artifact.from_anndata(
adata,
description="Curated bulk RNA counts"
)
Hence, letβs save this artifact:
curated_file.save()
Link to validated metadata records:
curated_file.features.add_from_anndata(var_field=bt.Gene.stable_id, organism="saccharomyces cerevisiae")
β 2 terms (1.60%) are not validated for stable_id: Gfp_transgene_gene, YAR062W
curated_file.labels.add(efs.rna_seq, features.assay)
curated_file.labels.add(organism.saccharomyces_cerevisiae, features.organism)
curated_file.describe()
Artifact(uid='KSC16ivHp1bPy8jAOFvA', suffix='.h5ad', accessor='AnnData', description='Curated bulk RNA counts', size=28180, hash='6bieh8XjOCCz6bJToN4u1g', hash_type='md5', visibility=1, key_is_virtual=True, updated_at=2024-04-10 17:53:47 UTC)
Provenance:
π storage: Storage(uid='8HYEk5vC', root='/home/runner/work/lamin-usecases/lamin-usecases/docs/test-bulkrna', type='local', updated_at=2024-04-10 17:53:39 UTC, created_by_id=1)
π transform: Transform(uid='s5V0dNMVwL9i6K79', name='Bulk RNA-seq', key='bulkrna', version='0', type='notebook', updated_at=2024-04-10 17:53:45 UTC, created_by_id=1)
π run: Run(uid='WdexGnROKy7OtpN1HU65', started_at=2024-04-10 17:53:45 UTC, is_consecutive=True, transform_id=2, created_by_id=1)
π created_by: User(uid='DzTjkKse', handle='testuser1', name='Test User1', updated_at=2024-04-10 17:53:39 UTC)
Features:
var: FeatureSet(uid='KS1AmwXkEwRfhLcKuzbV', n=123, type='number', registry='bionty.Gene', hash='Se1pVG-akmzgoXOqCxhW', updated_at=2024-04-10 17:53:47 UTC, created_by_id=1)
'None', 'None', 'TGA1', 'SUP56', 'TRN1', 'None', 'TFC3', 'VPS8', 'EFB1', 'None', 'SSA1', 'ERP2', 'FUN14', 'SPO7', 'MDM10', 'SWC3', 'CYS3', 'DEP1', 'SYN8', 'NTG1', ...
external: FeatureSet(uid='vWB6ZiIFGBBqQyN2VBiK', n=2, registry='core.Feature', hash='1M-OP2BX7aqQTQIPrgAE', updated_at=2024-04-10 17:53:47 UTC, created_by_id=1)
π assay (1, bionty.ExperimentalFactor): 'RNA-Seq'
π organism (1, bionty.Organism): 'saccharomyces cerevisiae'
Labels:
π organism (1, bionty.Organism): 'saccharomyces cerevisiae'
π experimental_factors (1, bionty.ExperimentalFactor): 'RNA-Seq'
Query data#
We have two files in the artifact registry:
ln.Artifact.df()
uid | storage_id | key | suffix | accessor | description | version | size | hash | hash_type | n_objects | n_observations | transform_id | run_id | visibility | key_is_virtual | created_at | updated_at | created_by_id | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
id | |||||||||||||||||||
2 | KSC16ivHp1bPy8jAOFvA | 1 | None | .h5ad | AnnData | Curated bulk RNA counts | None | 28180 | 6bieh8XjOCCz6bJToN4u1g | md5 | None | None | 2 | 2 | 1 | True | 2024-04-10 17:53:47.112800+00:00 | 2024-04-10 17:53:47.142007+00:00 | 1 |
1 | J4ZtqUh1PT1lXtZJzDja | 1 | output_dir/salmon.merged.gene_counts.tsv | .tsv | None | Merged Bulk RNA counts | None | 3787 | xxw0k3au3KtxFcgtbEr4eQ | md5 | None | None | 1 | 1 | 1 | False | 2024-04-10 17:53:45.195850+00:00 | 2024-04-10 17:53:45.195876+00:00 | 1 |
curated_file.view_lineage()
Letβs by query by gene:
genes = bt.Gene.lookup()
genes.spo7
Private registry
Entity: Gene
π .df(): reference table
π .lookup(): autocompletion of terms
π― .search(): free text search of terms
β
.validate(): strictly validate values
π§ .inspect(): full inspection of values
π½ .standardize(): convert to standardized names
# a gene set containing SPO7
feature_set = ln.FeatureSet.filter(genes=genes.spo7).first()
# artifacts that link to this feature set
ln.Artifact.filter(feature_sets=feature_set).df()
uid | storage_id | key | suffix | accessor | description | version | size | hash | hash_type | n_objects | n_observations | transform_id | run_id | visibility | key_is_virtual | created_at | updated_at | created_by_id | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
id | |||||||||||||||||||
2 | KSC16ivHp1bPy8jAOFvA | 1 | None | .h5ad | AnnData | Curated bulk RNA counts | None | 28180 | 6bieh8XjOCCz6bJToN4u1g | md5 | None | None | 2 | 2 | 1 | True | 2024-04-10 17:53:47.112800+00:00 | 2024-04-10 17:53:47.142007+00:00 | 1 |
# clean up test instance
!lamin delete --force test-bulkrna
!rm -r test-bulkrna
Show code cell output
π‘ deleting instance testuser1/test-bulkrna
β manually delete your stored data: /home/runner/work/lamin-usecases/lamin-usecases/docs/test-bulkrna