Query & integrate data#
import lamindb as ln
import bionty as bt
💡 connected lamindb: testuser1/test-facs
ln.settings.transform.stem_uid = "wukchS8V976U"
ln.settings.transform.version = "0"
ln.track()
💡 notebook imports: bionty==0.42.7 lamindb==0.69.9
💡 saved: Transform(uid='wukchS8V976U6K79', name='Query & integrate data', key='facs3', version='0', type='notebook', updated_at=2024-04-10 17:54:26 UTC, created_by_id=1)
💡 saved: Run(uid='CWvZ30bs7lqwqfnMpwwz', transform_id=3, created_by_id=1)
Inspect the CellMarker registry #
Inspect your aggregated cell marker registry as a DataFrame
:
bt.CellMarker.df().head()
uid | name | synonyms | gene_symbol | ncbi_gene_id | uniprotkb_id | organism_id | public_source_id | created_at | updated_at | created_by_id | |
---|---|---|---|---|---|---|---|---|---|---|---|
id | |||||||||||
41 | 7SyRazPQeCqG | CD14/19 | None | None | None | None | 1 | NaN | 2024-04-10 17:54:20.526397+00:00 | 2024-04-10 17:54:20.526418+00:00 | 1 |
40 | 6ASIQ7GR2c39 | CD103 | ITGAE | 3682 | P38570 | 1 | 18.0 | 2024-04-10 17:54:20.491143+00:00 | 2024-04-10 17:54:20.491153+00:00 | 1 | |
39 | 7OES2NXy0W6C | CD69 | CD69 | 969 | Q07108 | 1 | 18.0 | 2024-04-10 17:54:20.491047+00:00 | 2024-04-10 17:54:20.491058+00:00 | 1 | |
38 | 4Y0JkNLWc8tl | CD49B | ITGA2 | 3673 | P17301 | 1 | 18.0 | 2024-04-10 17:54:20.490949+00:00 | 2024-04-10 17:54:20.490960+00:00 | 1 | |
37 | 2ddvD3rZZ38f | CXCR4 | CXCR4 | 7852 | P61073 | 1 | 18.0 | 2024-04-10 17:54:20.490849+00:00 | 2024-04-10 17:54:20.490861+00:00 | 1 |
Search for a marker (synonyms aware):
bt.CellMarker.search("PD-1").head(2)
uid | synonyms | score | |
---|---|---|---|
name | |||
PD1 | 6c7MomnrsfYu | PID1|PD-1|PD 1 | 100.0 |
CD14/19 | 7SyRazPQeCqG | 54.5 |
Look up markers with auto-complete:
markers = bt.CellMarker.lookup()
markers.cd8
Private registry
Entity: CellMarker
📖 .df(): reference table
🔎 .lookup(): autocompletion of terms
🎯 .search(): free text search of terms
✅ .validate(): strictly validate values
🧐 .inspect(): full inspection of values
👽 .standardize(): convert to standardized names
Query artifacts by markers #
Query panels and collections based on markers, e.g., which collections have 'CD8'
in the flow panel:
panels_with_cd8 = ln.FeatureSet.filter(cell_markers=markers.cd8).all()
ln.Artifact.filter(feature_sets__in=panels_with_cd8).df()
uid | storage_id | key | suffix | accessor | description | version | size | hash | hash_type | n_objects | n_observations | transform_id | run_id | visibility | key_is_virtual | created_at | updated_at | created_by_id | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
id | |||||||||||||||||||
1 | F7Q3UeB48eoUVjZFTSu1 | 1 | None | .h5ad | AnnData | Alpert19 | None | 33369696 | VsTnnzHN63ovNESaJtlRUQ | md5 | None | None | 1 | 1 | 1 | True | 2024-04-10 17:54:11.193142+00:00 | 2024-04-10 17:54:11.317701+00:00 | 1 |
2 | YwJCInfD0s5prm62GDgj | 1 | None | .h5ad | AnnData | Oetjen18_t1 | None | 46501304 | I8nRS02iBs5z1J01b2qwOg | md5 | None | None | 2 | 2 | 1 | True | 2024-04-10 17:54:20.939413+00:00 | 2024-04-10 17:54:21.018519+00:00 | 1 |
Access registries:
features = ln.Feature.lookup()
Find shared cell markers between two files:
artifacts = ln.Artifact.filter(feature_sets__in=panels_with_cd8).list()
file1, file2 = artifacts[0], artifacts[1]
shared_markers = file1.features["var"] & file2.features["var"]
shared_markers.list("name")
['Cd4', 'CD8', 'CD3', 'CD27', 'Ccr7', 'CD45RA']