Gene#
lamindb provides access to the following public gene ontologies through bionty:
Here we show how to access and search gene ontologies to standardize new data.
Setup#
!lamin init --storage ./test-public-ontologies --schema bionty
π‘ connected lamindb: testuser1/test-public-ontologies
import bionty as bt
import pandas as pd
π‘ connected lamindb: testuser1/test-public-ontologies
PublicOntology objects#
Let us create a public ontology accessor with public()
, which chooses a default public ontology source from PublicSource
. Itβs a PublicOntology object, which you can think about as a public registry:
public = bt.Gene.public(organism="human")
public
PublicOntology
Entity: Gene
Organism: human
Source: ensembl, release-110
#terms: 75719
π .df(): ontology reference table
π .lookup(): autocompletion of terms
π― .search(): free text search of terms
β
.validate(): strictly validate values
π§ .inspect(): full inspection of values
π½ .standardize(): convert to standardized names
πͺ .diff(): difference between two versions
π .to_pronto(): Pronto.Ontology object
As for registries, you can export the ontology as a DataFrame
:
df = public.df()
df.head()
ensembl_gene_id | symbol | ncbi_gene_id | biotype | description | synonyms | |
---|---|---|---|---|---|---|
0 | ENSG00000000003 | TSPAN6 | 7105 | protein_coding | tetraspanin 6 | TSPAN-6|T245|TM4SF6 |
1 | ENSG00000000005 | TNMD | 64102 | protein_coding | tenomodulin | BRICD4|CHM1L|TENDIN|TEM|MYODULIN |
2 | ENSG00000000419 | DPM1 | 8813 | protein_coding | dolichyl-phosphate mannosyltransferase subunit... | MPDS|CDGIE |
3 | ENSG00000000457 | SCYL3 | 57147 | protein_coding | SCY1 like pseudokinase 3 | PACE-1|PACE1 |
4 | ENSG00000000460 | C1orf112 | 55732 | protein_coding | chromosome 1 open reading frame 112 | FLIP|APOLO1|FLJ10706 |
Unlike registries, you can also export it as a Pronto object via public.ontology
.
Look up terms#
As for registries, terms can be looked up with auto-complete:
lookup = public.lookup()
The .
accessor provides normalized terms (lower case, only contains alphanumeric characters and underscores):
lookup.tcf7
Gene(ensembl_gene_id='ENSG00000081059', symbol='TCF7', ncbi_gene_id='6932', biotype='protein_coding', description='transcription factor 7 ', synonyms='TCF-1')
To look up the exact original strings, convert the lookup object to dict and use the []
accessor:
lookup_dict = lookup.dict()
lookup_dict["TCF7"]
Gene(ensembl_gene_id='ENSG00000081059', symbol='TCF7', ncbi_gene_id='6932', biotype='protein_coding', description='transcription factor 7 ', synonyms='TCF-1')
By default, the name
field is used to generate lookup keys. You can specify another field to look up:
lookup = public.lookup(public.ncbi_gene_id)
If multiple entries are matched, they are returned as a list:
lookup.bt_100126572
Gene(ensembl_gene_id='ENSG00000203733', symbol='GJE1', ncbi_gene_id='100126572', biotype='protein_coding', description='gap junction protein epsilon 1 ', synonyms='CX23')
Search terms#
Search behaves in the same way as it does for registries:
public.search("TP53").head(3)
ensembl_gene_id | ncbi_gene_id | biotype | description | synonyms | __ratio__ | |
---|---|---|---|---|---|---|
symbol | ||||||
TP53 | ENSG00000141510 | 7157 | protein_coding | tumor protein p53 | P53|LFS1 | 100.0 |
TP53TG3GP | ENSG00000261274 | None | unprocessed_pseudogene | TP53 target 3 family member G, pseudogene | 90.0 | |
TP53TG1 | ENSG00000182165 | None | lncRNA | TP53 target 1 | TP53LC12|LINC00096|TP53AP1|H_RG012D21.9 | 90.0 |
By default, search also covers synonyms:
public.search("PDL1").head(3)
ensembl_gene_id | ncbi_gene_id | biotype | description | synonyms | __ratio__ | |
---|---|---|---|---|---|---|
symbol | ||||||
CD274 | ENSG00000120217 | 29126 | protein_coding | CD274 molecule | PDCD1LG1|B7H1|B7-H|PD-L1|PDL1|B7-H1 | 100.0 |
GAPDHP73 | ENSG00000226540 | None | processed_pseudogene | glyceraldehyde-3-phosphate dehydrogenase pseud... | GAPDHL19|GAPDL19 | 90.0 |
IGKV1-16 | ENSG00000282282 | None | IG_V_gene | immunoglobulin kappa variable 1-16 | IGKV116|L1 | 90.0 |
You can turn this off synonym by passing synonyms_field=None
:
public.search("PDL1", synonyms_field=None).head(3)
ensembl_gene_id | ncbi_gene_id | biotype | description | synonyms | __ratio__ | |
---|---|---|---|---|---|---|
symbol | ||||||
SPDL1 | ENSG00000040275 | 54908 | protein_coding | spindle apparatus coiled-coil protein 1 | CCDC99|HSPINDLY|FLJ20364 | 88.888889 |
PKD2L1 | ENSG00000107593 | 9033 | protein_coding | polycystin 2 like 1, transient receptor potent... | PKDL|TRPP3|PCL|PKD2L | 80.000000 |
PKD1L1 | ENSG00000158683 | 168507 | protein_coding | polycystin 1 like 1, transient receptor potent... | PRO19563 | 80.000000 |
Search another field (default is .name
):
public.search("tumor protein p53", field=public.description).head()
ensembl_gene_id | symbol | ncbi_gene_id | biotype | synonyms | __ratio__ | |
---|---|---|---|---|---|---|
description | ||||||
tumor protein p53 | ENSG00000141510 | TP53 | 7157 | protein_coding | P53|LFS1 | 100.000000 |
tumor protein p63 | ENSG00000073282 | TP63 | 8626 | protein_coding | OFC8|P73H|NBP|KET|P40|SHFM4|TP73L|P53CP|P73L|T... | 94.117647 |
tumor protein p73 | ENSG00000078900 | TP73 | 7161 | protein_coding | P73 | 94.117647 |
tumor protein D52 | ENSG00000076554 | TPD52 | 124188259 | protein_coding | D52|N8L|HD52 | 88.235294 |
tumor protein D52 | ENSG00000076554 | TPD52 | 7163 | protein_coding | D52|N8L|HD52 | 88.235294 |
Standardize gene identifiers#
Let us generate a DataFrame
that stores a number of gene identifiers, some of which corrupted:
data = {
"gene symbol": ["A1CF", "A1BG", "FANCD1", "corrupted"],
"ncbi id": ["29974", "1", "5133", "corrupted"],
"ensembl_gene_id": [
"ENSG00000148584",
"ENSG00000121410",
"ENSG00000188389",
"ENSGcorrupted",
],
}
df_orig = pd.DataFrame(data).set_index("ensembl_gene_id")
df_orig
gene symbol | ncbi id | |
---|---|---|
ensembl_gene_id | ||
ENSG00000148584 | A1CF | 29974 |
ENSG00000121410 | A1BG | 1 |
ENSG00000188389 | FANCD1 | 5133 |
ENSGcorrupted | corrupted | corrupted |
First we can check whether any of our values are validated against the ontology reference:
validated = public.validate(df_orig.index, public.ensembl_gene_id)
df_orig.index[~validated]
β
3 terms (75.00%) are validated
β 1 term (25.00%) is not validated: ENSGcorrupted
Index(['ENSGcorrupted'], dtype='object', name='ensembl_gene_id')
Next, we validate which symbols are mappable against the ontology:
# based on NCBI gene ID
public.validate(df_orig["ncbi id"], public.ncbi_gene_id)
β
3 terms (75.00%) are validated
β 1 term (25.00%) is not validated: corrupted
array([ True, True, True, False])
# based on Gene symbols
validated_symbols = public.validate(df_orig["gene symbol"], public.symbol)
df_orig["gene symbol"][~validated_symbols]
β
2 terms (50.00%) are validated
β 2 terms (50.00%) are not validated: FANCD1, corrupted
ensembl_gene_id
ENSG00000188389 FANCD1
ENSGcorrupted corrupted
Name: gene symbol, dtype: object
Here, 2 of the gene symbols are not validated. Inspect why:
public.inspect(df_orig["gene symbol"], public.symbol);
β
2 terms (50.00%) are validated for symbol
β 2 terms (50.00%) are not validated for symbol: FANCD1, corrupted
detected 1 terms with synonym: FANCD1
β standardize terms via .standardize()
Logging suggests to use .standardize()
:
mapped_symbol_synonyms = public.standardize(df_orig["gene symbol"])
mapped_symbol_synonyms
π‘ standardized 3/4 terms
['A1CF', 'A1BG', 'BRCA2', 'corrupted']
Optionally, you can return a mapper in the form of {synonym1: standardized_name1, ...}
:
public.standardize(df_orig["gene symbol"], return_mapper=True)
π‘ standardized 3/4 terms
{'FANCD1': 'BRCA2'}
We can use the standardized symbols as the new standardized index:
df_curated = df_orig.reset_index()
df_curated.index = mapped_symbol_synonyms
df_curated
ensembl_gene_id | gene symbol | ncbi id | |
---|---|---|---|
A1CF | ENSG00000148584 | A1CF | 29974 |
A1BG | ENSG00000121410 | A1BG | 1 |
BRCA2 | ENSG00000188389 | FANCD1 | 5133 |
corrupted | ENSGcorrupted | corrupted | corrupted |
You can convert identifiers by passing return_field
to standardize()
:
public.standardize(
df_curated.index,
field=public.symbol,
return_field=public.ensembl_gene_id,
)
π‘ standardized 3/4 terms
['ENSG00000148584', 'ENSG00000121410', 'ENSG00000139618', 'corrupted']
And return mappable identifiers as a dict:
public.standardize(
df_curated.index,
field=public.symbol,
return_field=public.ensembl_gene_id,
return_mapper=True,
)
π‘ standardized 3/4 terms
{'A1BG': 'ENSG00000121410',
'BRCA2': 'ENSG00000139618',
'A1CF': 'ENSG00000148584'}
Ontology source versions#
For any given entity, we can choose from a number of versions:
bt.PublicSource.filter(entity="Gene").df()
uid | entity | organism | currently_used | source | source_name | version | url | md5 | source_website | created_at | updated_at | created_by_id | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
id | |||||||||||||
9 | 4yVc | Gene | human | True | ensembl | Ensembl | release-110 | s3://bionty-assets/df_human__ensembl__release-... | 832f3947e83664588d419608a469b528 | https://www.ensembl.org | 2024-04-10 17:49:03.806098+00:00 | 2024-04-10 17:49:03.806108+00:00 | 1 |
10 | 4dlM | Gene | human | False | ensembl | Ensembl | release-109 | s3://bionty-assets/human_ensembl_release-109_G... | 72da9968c74e96d136a489a6102a4546 | https://www.ensembl.org | 2024-04-10 17:49:03.806190+00:00 | 2024-04-10 17:49:03.806199+00:00 | 1 |
11 | 2akp | Gene | mouse | True | ensembl | Ensembl | release-110 | s3://bionty-assets/df_mouse__ensembl__release-... | fa4ce130f2929aefd7ac3bc8eaf0c4de | https://www.ensembl.org | 2024-04-10 17:49:03.806281+00:00 | 2024-04-10 17:49:03.806290+00:00 | 1 |
12 | 3JQx | Gene | mouse | False | ensembl | Ensembl | release-109 | s3://bionty-assets/mouse_ensembl_release-109_G... | 08a1165061151b270b985317322bd2ed | https://www.ensembl.org | 2024-04-10 17:49:03.806370+00:00 | 2024-04-10 17:49:03.806379+00:00 | 1 |
13 | 2UvD | Gene | saccharomyces cerevisiae | True | ensembl | Ensembl | release-110 | s3://bionty-assets/df_saccharomyces cerevisiae... | 2e59495a3e87ea6575e408697dd73459 | https://www.ensembl.org | 2024-04-10 17:49:03.806458+00:00 | 2024-04-10 17:49:03.806468+00:00 | 1 |
When instantiating a Bionty object, we can choose a source or version:
public_source = bt.PublicSource.filter(
source="ensembl", version="release-110", organism="human"
).one()
public = bt.Gene.public(public_source=public_source)
public
PublicOntology
Entity: Gene
Organism: human
Source: ensembl, release-110
#terms: 75719
π .df(): ontology reference table
π .lookup(): autocompletion of terms
π― .search(): free text search of terms
β
.validate(): strictly validate values
π§ .inspect(): full inspection of values
π½ .standardize(): convert to standardized names
πͺ .diff(): difference between two versions
π .to_pronto(): Pronto.Ontology object
The currently used ontologies can be displayed using:
bt.PublicSource.filter(currently_used=True).df()
Show code cell output
uid | entity | organism | currently_used | source | source_name | version | url | md5 | source_website | created_at | updated_at | created_by_id | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
id | |||||||||||||
1 | 6IUo | Organism | vertebrates | True | ensembl | Ensembl | release-110 | https://ftp.ensembl.org/pub/release-110/specie... | f3faf95648d3a2b50fd3625456739706 | https://www.ensembl.org | 2024-04-10 17:49:03.805304+00:00 | 2024-04-10 17:49:03.805323+00:00 | 1 |
4 | 2Jzh | Organism | bacteria | True | ensembl | Ensembl | release-57 | https://ftp.ensemblgenomes.ebi.ac.uk/pub/bacte... | ee28510ed5586ea7ab4495717c96efc8 | https://www.ensembl.org | 2024-04-10 17:49:03.805611+00:00 | 2024-04-10 17:49:03.805620+00:00 | 1 |
5 | 1kdI | Organism | fungi | True | ensembl | Ensembl | release-57 | http://ftp.ensemblgenomes.org/pub/fungi/releas... | dbcde58f4396ab8b2480f7fe9f83df8a | https://www.ensembl.org | 2024-04-10 17:49:03.805701+00:00 | 2024-04-10 17:49:03.805710+00:00 | 1 |
6 | 2mIM | Organism | metazoa | True | ensembl | Ensembl | release-57 | http://ftp.ensemblgenomes.org/pub/metazoa/rele... | 424636a574fec078a61cbdddb05f9132 | https://www.ensembl.org | 2024-04-10 17:49:03.805813+00:00 | 2024-04-10 17:49:03.805825+00:00 | 1 |
7 | 2XQ6 | Organism | plants | True | ensembl | Ensembl | release-57 | https://ftp.ensemblgenomes.ebi.ac.uk/pub/plant... | eadaa1f3e527e4c3940c90c7fa5c8bf4 | https://www.ensembl.org | 2024-04-10 17:49:03.805908+00:00 | 2024-04-10 17:49:03.805918+00:00 | 1 |
8 | 1Vzs | Organism | all | True | ncbitaxon | NCBItaxon Ontology | 2023-06-20 | s3://bionty-assets/df_all__ncbitaxon__2023-06-... | 00d97ba65627f1cd65636d2df22ea76c | https://github.com/obophenotype/ncbitaxon | 2024-04-10 17:49:03.806001+00:00 | 2024-04-10 17:49:03.806011+00:00 | 1 |
9 | 4yVc | Gene | human | True | ensembl | Ensembl | release-110 | s3://bionty-assets/df_human__ensembl__release-... | 832f3947e83664588d419608a469b528 | https://www.ensembl.org | 2024-04-10 17:49:03.806098+00:00 | 2024-04-10 17:49:03.806108+00:00 | 1 |
11 | 2akp | Gene | mouse | True | ensembl | Ensembl | release-110 | s3://bionty-assets/df_mouse__ensembl__release-... | fa4ce130f2929aefd7ac3bc8eaf0c4de | https://www.ensembl.org | 2024-04-10 17:49:03.806281+00:00 | 2024-04-10 17:49:03.806290+00:00 | 1 |
13 | 2UvD | Gene | saccharomyces cerevisiae | True | ensembl | Ensembl | release-110 | s3://bionty-assets/df_saccharomyces cerevisiae... | 2e59495a3e87ea6575e408697dd73459 | https://www.ensembl.org | 2024-04-10 17:49:03.806458+00:00 | 2024-04-10 17:49:03.806468+00:00 | 1 |
14 | 7llW | Protein | human | True | uniprot | Uniprot | 2023-03 | s3://bionty-assets/df_human__uniprot__2023-03_... | 1c46e85c6faf5eff3de5b4e1e4edc4d3 | https://www.uniprot.org | 2024-04-10 17:49:03.806548+00:00 | 2024-04-10 17:49:03.806557+00:00 | 1 |
16 | 5U7J | Protein | mouse | True | uniprot | Uniprot | 2023-03 | s3://bionty-assets/df_mouse__uniprot__2023-03_... | 9d5e9a8225011d3218e10f9bbb96a46c | https://www.uniprot.org | 2024-04-10 17:49:03.806725+00:00 | 2024-04-10 17:49:03.806735+00:00 | 1 |
18 | 5nkB | CellMarker | human | True | cellmarker | CellMarker | 2.0 | s3://bionty-assets/human_cellmarker_2.0_CellMa... | d565d4a542a5c7e7a06255975358e4f4 | http://bio-bigdata.hrbmu.edu.cn/CellMarker | 2024-04-10 17:49:03.806906+00:00 | 2024-04-10 17:49:03.806915+00:00 | 1 |
19 | 6AFz | CellMarker | mouse | True | cellmarker | CellMarker | 2.0 | s3://bionty-assets/mouse_cellmarker_2.0_CellMa... | 189586732c63be949e40dfa6a3636105 | http://bio-bigdata.hrbmu.edu.cn/CellMarker | 2024-04-10 17:49:03.806995+00:00 | 2024-04-10 17:49:03.807004+00:00 | 1 |
20 | 6cbC | CellLine | all | True | clo | Cell Line Ontology | 2022-03-21 | https://data.bioontology.org/ontologies/CLO/su... | ea58a1010b7e745702a8397a526b3a33 | https://bioportal.bioontology.org/ontologies/CLO | 2024-04-10 17:49:03.807084+00:00 | 2024-04-10 17:49:03.807094+00:00 | 1 |
21 | 6tvq | CellType | all | True | cl | Cell Ontology | 2023-08-24 | http://purl.obolibrary.org/obo/cl/releases/202... | 46e7dd89421f1255cf0191eca1548f73 | https://obophenotype.github.io/cell-ontology | 2024-04-10 17:49:03.807174+00:00 | 2024-04-10 17:49:03.807183+00:00 | 1 |
25 | 1PY3 | Tissue | all | True | uberon | Uberon multi-species anatomy ontology | 2023-09-05 | http://purl.obolibrary.org/obo/uberon/releases... | abcee3ede566d1311d758b853ccdf5aa | http://obophenotype.github.io/uberon | 2024-04-10 17:49:03.807528+00:00 | 2024-04-10 17:49:03.807537+00:00 | 1 |
29 | 6EOm | Disease | all | True | mondo | Mondo Disease Ontology | 2023-08-02 | http://purl.obolibrary.org/obo/mondo/releases/... | 7f33767422042eec29f08b501fc851db | https://mondo.monarchinitiative.org | 2024-04-10 17:49:03.807883+00:00 | 2024-04-10 17:49:03.807892+00:00 | 1 |
33 | 3V9D | Disease | human | True | doid | Human Disease Ontology | 2023-03-31 | http://purl.obolibrary.org/obo/doid/releases/2... | 64f083a1e47867c307c8eae308afc3bb | https://disease-ontology.org | 2024-04-10 17:49:03.808236+00:00 | 2024-04-10 17:49:03.808245+00:00 | 1 |
39 | 6fKX | ExperimentalFactor | all | True | efo | The Experimental Factor Ontology | 3.57.0 | http://www.ebi.ac.uk/efo/releases/v3.57.0/efo.owl | 2ecafc69b3aba7bdb31ad99438505c05 | https://bioportal.bioontology.org/ontologies/EFO | 2024-04-10 17:49:03.808765+00:00 | 2024-04-10 17:49:03.808774+00:00 | 1 |
41 | 6jHz | Phenotype | human | True | hp | Human Phenotype Ontology | 2023-06-17 | https://github.com/obophenotype/human-phenotyp... | 65e8d96bc81deb893163927063b10c06 | https://hpo.jax.org | 2024-04-10 17:49:03.808940+00:00 | 2024-04-10 17:49:03.808949+00:00 | 1 |
44 | 4q5A | Phenotype | mammalian | True | mp | Mammalian Phenotype Ontology | 2023-05-31 | https://github.com/mgijax/mammalian-phenotype-... | be89052cf6d9c0b6197038fe347ef293 | https://github.com/mgijax/mammalian-phenotype-... | 2024-04-10 17:49:03.809204+00:00 | 2024-04-10 17:49:03.809213+00:00 | 1 |
45 | 6Czy | Phenotype | zebrafish | True | zp | Zebrafish Phenotype Ontology | 2022-12-17 | https://github.com/obophenotype/zebrafish-phen... | 03430b567bf153216c0fa4c3440b3b24 | https://github.com/obophenotype/zebrafish-phen... | 2024-04-10 17:49:03.809291+00:00 | 2024-04-10 17:49:03.809300+00:00 | 1 |
47 | 55lY | Phenotype | all | True | pato | Phenotype And Trait Ontology | 2023-05-18 | http://purl.obolibrary.org/obo/pato/releases/2... | bd472f4971492109493d4ad8a779a8dd | https://github.com/pato-ontology/pato | 2024-04-10 17:49:03.809466+00:00 | 2024-04-10 17:49:03.809475+00:00 | 1 |
48 | 48aa | Pathway | all | True | go | Gene Ontology | 2023-05-10 | https://data.bioontology.org/ontologies/GO/sub... | e9845499eadaef2418f464cd7e9ac92e | http://geneontology.org | 2024-04-10 17:49:03.809554+00:00 | 2024-04-10 17:49:03.809563+00:00 | 1 |
50 | 3rm9 | BFXPipeline | all | True | lamin | Bioinformatics Pipeline | 1.0.0 | s3://bionty-assets/bfxpipelines.json | a7eff57a256994692fba46e0199ffc94 | https://lamin.ai | 2024-04-10 17:49:03.809749+00:00 | 2024-04-10 17:49:03.809761+00:00 | 1 |
51 | 3TI0 | Drug | all | True | dron | Drug Ontology | 2023-03-10 | https://data.bioontology.org/ontologies/DRON/s... | 75e86011158fae76bb46d96662a33ba3 | https://bioportal.bioontology.org/ontologies/DRON | 2024-04-10 17:49:03.809847+00:00 | 2024-04-10 17:49:03.809857+00:00 | 1 |
52 | 7CRn | DevelopmentalStage | human | True | hsapdv | Human Developmental Stages | 2020-03-10 | http://aber-owl.net/media/ontologies/HSAPDV/11... | 52181d59df84578ed69214a5cb614036 | https://github.com/obophenotype/developmental-... | 2024-04-10 17:49:03.809941+00:00 | 2024-04-10 17:49:03.809950+00:00 | 1 |
53 | 16tR | DevelopmentalStage | mouse | True | mmusdv | Mouse Developmental Stages | 2020-03-10 | http://aber-owl.net/media/ontologies/MMUSDV/9/... | 5bef72395d853c7f65450e6c2a1fc653 | https://github.com/obophenotype/developmental-... | 2024-04-10 17:49:03.810033+00:00 | 2024-04-10 17:49:03.810042+00:00 | 1 |
54 | 3Tlc | Ethnicity | human | True | hancestro | Human Ancestry Ontology | 3.0 | https://github.com/EBISPOT/hancestro/raw/3.0/h... | 76dd9efda9c2abd4bc32fc57c0b755dd | https://github.com/EBISPOT/hancestro | 2024-04-10 17:49:03.810123+00:00 | 2024-04-10 17:49:03.810133+00:00 | 1 |
55 | 5JnV | BioSample | all | True | ncbi | NCBI BioSample attributes | 2023-09 | s3://bionty-assets/df_all__ncbi__2023-09__BioS... | 918db9bd1734b97c596c67d9654a4126 | https://www.ncbi.nlm.nih.gov/biosample/docs/at... | 2024-04-10 17:49:03.810213+00:00 | 2024-04-10 17:49:03.810223+00:00 | 1 |